# 步履不停

## -"中国天眼"为世界天文提供"中国智慧"

### 新华社记者 赵新兵 欧东衢 潘德鑫

4月17日,记者从国家天文台FAST运行和发展中心获悉,有"中国天眼"之称的500 米口径球面射电望远镜(FAST)已发现900余颗新脉冲星。

在快速射电暴起源、引力波探测等领域产出一系列世界级成果;自主研发的接收机 核心零部件有望走出国门;FAST核心阵建设蓄势待发……

极目星空,步履不停。"中国天眼"正不断为世界天文提供中国智慧、为全球工程界 提供中国技术。



"中国天眼"是耳熟能详的国之重器。为 "早出成果、多出成果,出好成果、出大成果", 中国科学家不断"挑战认知和技术极限",用 "中国创造"擦亮深邃"天眼"。

截至目前,"中国天眼"已发现900余颗新 脉冲星,其中至少包括170余颗毫秒脉冲星、 120余颗双星脉冲星、80颗暗弱的偶发脉冲星。

"我们正在拓展人类对宇宙的认知极限。" 国家天文台银道面脉冲星巡天项目负责人韩 金林说。从人类发现第一颗脉冲星到 FAST 发现首颗脉冲星的50年里,全世界发现的脉 冲星不到3000颗。

2017年10月10日,"中国天眼"宣布发现6 颗新脉冲星,实现"零的突破"。这是中国首次 利用自己独立研制的射电望远镜发现脉冲星。

目前,"中国天眼"发现的900余颗新脉冲 星,是国际上同时期其他望远镜发现脉冲星总 数的3倍以上。

其中,发现的80颗暗弱的偶发脉冲星与 正常脉冲星相比,辐射流量密度还要低一个量 级,最低的已经达到了亚微央量级。

在韩金林看来,对这些偶发脉冲星的研究 对于理解银河系中恒星死亡后形成多少致密 中子星残骸及揭示未知的脉冲辐射物理过程 具有重要意义。

韩金林告诉记者,如果把搜寻脉冲星比作 摘果子,之前发现的脉冲星都离地面比较近、 容易"摘","中国天眼"发现的900余颗新脉冲 星则是更远或者采摘难度更大的。

因为每一颗脉冲星都有其特殊脉冲及稳 定的转动频率,它们相当于宇宙中具有特有信 号标记的"灯塔"。如果人类在未来能够实现 "星际穿越"的话,这些脉冲星将为人类在浩瀚

会走丢了。"韩金林说。

首次在射电波段观测到黑洞"脉搏"、探测 到纳赫兹引力波存在的关键证据、探测并构建 世界最大中性氢星系样本……近年来,"中国 天眼"为探索宇宙奥秘作出中国贡献。

眼"从诞生那一刻开始,就肩负使命。

在可预见的未来,"中国天眼"将为国际天 文界持续探索宇宙、尝试寻找未知事物带来更 多新视角,为引领人类突破认知新领域作出更



"原以为要修改七八遍,没想到第一版性 能就达到了世界先进水平。"中国科学院国家 天文台高级工程师柴晓明向记者介绍着眼前 一个外壳镀银、只有口风琴大小的低噪声放大 器,言语中难掩兴奋。

低噪声放大器是"中国天眼"接收机的核 心零部件,此前都靠进口。

为解决"卡脖子"问题、把关键技术掌握在自 己手里, 柴晓明所在的团队用了近2年时间自主

研发出了这款高性能的国产低噪声放大器。 样机一经推出就受到了国际天文界关注, 位于巴西的 BINGO 项目第一时间向 FAST 运

的宇宙中旅行提供"导航"。

"我们精确测量出脉冲星在宇宙空间中的 坐标,在旅途中时刻监测多个脉冲星信号的相 位及对应的位置关系,人类在星际旅行中就不

未知和未来面前,人类命运与共。"中国天

"中国天眼"测量与控制工程师孙纯介绍,自 2021年3月31日正式对全球科学界开放以来, "中国天眼"已帮助美国、荷兰、澳大利亚等15个国 家的研究团队开展观测近900小时,涉及科学目 标漂移扫描巡天、中性氢星系巡天、银河系偏振巡 天、脉冲星测时、快速射电暴观测等多个领域。

行和发展中心提出批量购买的合作意愿。 "中国天眼"作为世界最大、最灵敏的单口

径球面射电望远镜,激发了很多特殊的技术需 求,需要中国科学家们充分发挥主观能动性和 创造力,在不断"挑战认知和技术极限"、不断 "发现问题、解决问题"中优化升级。 创新无捷径,唯有敢攀登。

数量突破900颗。图为位于贵州平塘县的"中国天眼"。

"没人告诉你可以怎么做,谁也没有把握 自己的方法一定行。"FAST运行和发展中心 常务副主任、总工程师姜鹏说,"反复试验、多 次失败、越挫越勇"的艰难攻关几乎贯穿了 FAST建设阶段的每一个环节。

为解决索疲劳问题,姜鹏带领一帮年轻人历经 近百次失败,成功支撑起"中国天眼"的"视网膜"。

为开发新的控制系统,FAST运行和发展中 心测量与控制工程部主任孙京海无数次挑灯夜 战至东方既白,几乎重写了全部核心算法代码。

为解决变电站电磁干扰问题,FAST运行 和发展中心电子与电气工程部主任甘恒谦经 过近2年的摸索与试验,发明了与"中国天眼" 匹配的高压滤波器……

仅在建设阶段,"中国天眼"获得了钢结构、 自动化产业、机械工业、测绘地理信息技术、电 磁兼容研发等十余个领域的重要科技奖项。

"天眼"问天,没有终点。姜鹏坦言,如果

只把 FAST 当成一个望远镜、一台监测设备, 现在已经达标了。但要维持FAST世界领先 的地位,我们的创新就不能停下来,我们会倾 尽全力让FAST稳定性更好、运行效率更高。

4月17日,记者从中国科学院国家天文台 FAST 运行和发展中心获得消息,被誉为"中国天眼"的500米口径球面射电望远镜(FAST)发现的新脉冲星

目前,FAST年度观测时间稳定在5300 小时左右,为持续产出科研成果起到了重要的 支撑作用。

### >>> 竞逐未来

巡天探宇,解密星空。"中国天眼"没有停 止过创新的脚步。

"天文学极其浪漫,因为它研究的是人类的 星辰大海。天文学也极其残酷,因为国际竞争极 其激烈,一旦松懈,就会失去领跑地位。"姜鹏说。

放眼全球,国际大科学工程平方公里阵列 射电望远镜(SKA)等多个射电望远镜阵列均 在建设之中。

"一旦这些望远镜投入运行,'中国天眼'将面 临巨大的挑战。"姜鹏说,"我们稍有松懈,中国天 文学家就可能'失守'射电波段视野的最前沿。"

记者近日走进"中国天眼"核心区,在一处 离"中国天眼"不到3公里的山头上看到,挖掘 机正在紧张作业,原本杂木丛生、怪石嶙峋的 山顶已被推平、夯实。

里范围内优异的电磁波环境,建设20至30台 口径40米级全可动射电望远镜,与FAST组 成综合孔径阵,即FAST核心阵。"姜鹏告诉记 者,正在作业的山头在年内就会建成一台40 米级全可动射电望远镜。

新华社发

"单靠'中国天眼'观测宇宙,就像是用'粗 头铅笔'给天体画像,而核心阵建成投用的话, 相当于用高分辨率的'数码相机'拍摄遥远的 星空。"姜鹏介绍,核心阵一旦建成,将大幅提 高"中国天眼"的视力,让"'中国天眼'不仅能 看得远,还能看得清"。

在FAST运行和发展中心结构与机械工 程部主任李辉看来,FAST核心阵将拓展现有 科学研究领域,特别是在引力波事件、快速射 电暴、伽马射线暴、超新星、黑洞潮汐瓦解事件 等极端暂现源方面发挥重大作用。

除天体物理学研究,FAST核心阵还有望在 深空探测领域发挥巨大的作用,例如近地天体预 警、空间微小目标探测、深空卫星通讯及控制、电 离层特性测量、脉冲星时间基准等,可以为我国 空天领域发展起到非常重要的战略支撑作用。

姜鹏说:"为了让中国的射电天文力量始 终保持国际先进,我们将在新的起点加速攀 登,带领团队不断探索新的科学前沿。"

(新华社贵阳4月17日电



